BOOK AN APPOINTMENT WITH AN IT SPECIALIST TODAY

18 Feb 2020

AA20-049A: Ransomware Impacting Pipeline Operations

Original release date: February 18, 2020

Summary

Note: This Activity Alert uses the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK™) framework. See the MITRE ATT&CK for Enterprise and ATT&CK for Industrial Control Systems (ICS) frameworks for all referenced threat actor techniques and mitigations.

The Cybersecurity and Infrastructure Security Agency (CISA) encourages asset owner operators across all critical infrastructure sectors to review the below threat actor techniques and ensure the corresponding mitigations are applied.

CISA responded to a cyberattack affecting control and communication assets on the operational technology (OT) network of a natural gas compression facility. A cyber threat actor used a Spearphishing Link [T1192] to obtain initial access to the organization’s information technology (IT) network before pivoting to its OT network. The threat actor then deployed commodity ransomware to Encrypt Data for Impact [T1486] on both networks. Specific assets experiencing a Loss of Availability [T826] on the OT network included human machine interfaces (HMIs), data historians, and polling servers. Impacted assets were no longer able to read and aggregate real-time operational data reported from low-level OT devices, resulting in a partial Loss of View [T829] for human operators. The attack did not impact any programmable logic controllers (PLCs) and at no point did the victim lose control of operations. Although the victim’s emergency response plan did not specifically consider cyberattacks, the decision was made to implement a deliberate and controlled shutdown to operations. This lasted approximately two days, resulting in a Loss of Productivity and Revenue [T828], after which normal operations resumed. CISA is providing this Alert to help administrators and network defenders protect their organizations against this and similar ransomware attacks.

Technical Details

Network and Assets

  • The victim failed to implement robust segmentation between the IT and OT networks, which allowed the adversary to traverse the IT-OT boundary and disable assets on both networks.
  • The threat actor used commodity ransomware to compromise Windows-based assets on both the IT and OT networks. Assets impacted on the organization’s OT network included HMIs, data historians, and polling servers.
  • Because the attack was limited to Windows-based systems, PLCs responsible for directly reading and manipulating physical processes at the facility were not impacted.
  • The victim was able to obtain replacement equipment and load last-known-good configurations to facilitate the recovery process.
  • All OT assets directly impacted by the attack were limited to a single geographic facility.

Planning and Operations

  • At no time did the threat actor obtain the ability to control or manipulate operations. The victim took offline the HMIs that read and control operations at the facility. A separate and geographically distinct central control office was able to maintain visibility but was not instrumented for control of operations.
  • The victim’s existing emergency response plan focused on threats to physical safety and not cyber incidents. Although the plan called for a full emergency declaration and immediate shutdown, the victim judged the operational impact of the incident as less severe than those anticipated by the plan and decided to implement limited emergency response measures. These included a four-hour transition from operational to shutdown mode combined with increased physical security.
  • Although the direct operational impact of the cyberattack was limited to one control facility, geographically distinct compression facilities also had to halt operations because of pipeline transmission dependencies. This resulted in an operational shutdown of the entire pipeline asset lasting approximately two days.
  • Although they considered a range of physical emergency scenarios, the victim’s emergency response plan did not specifically consider the risk posed by cyberattacks. Consequently, emergency response exercises also failed to provide employees with decision-making experience in dealing with cyberattacks.
  • The victim cited gaps in cybersecurity knowledge and the wide range of possible scenarios as reasons for failing to adequately incorporate cybersecurity into emergency response planning.

Mitigations

Asset owner operators across all sectors are encouraged to consider the following mitigations using a risk-based assessment strategy.

Planning and Operational Mitigations

  • Ensure the organization’s emergency response plan considers the full range of potential impacts that cyberattacks pose to operations, including loss or manipulation of view, loss or manipulation of control, and loss of safety. In particular, response playbooks should identify criteria to distinguish between events requiring deliberate operational shutdown versus low-risk events that allow for operations to continue.
  • Exercise the ability to fail over to alternate control systems, including manual operation while assuming degraded electronic communications. Capture lessons learned in emergency response playbooks.
  • Allow employees to gain decision-making experience via tabletop exercises that incorporate loss of visibility and control scenarios. Capture lessons learned in emergency response playbooks.
  • Identify single points of failure (technical and human) for operational visibility. Develop and test emergency response playbooks to ensure there are redundant channels that allow visibility into operations when one channel is compromised.
  • Implement redundant communication capabilities between geographically separated facilities responsible for the operation of a single pipeline asset. Coordinate planning activities across all such facilities.
  • Recognize the physical risks that cyberattacks pose to safety and integrate cybersecurity into the organization’s safety training program.
  • Ensure the organization’s security program and emergency response plan consider third parties with legitimate need for OT network access, including engineers and vendors.

Technical and Architectural Mitigations

  • Implement and ensure robust Network Segmentation [M1030] between IT and OT networks to limit the ability of adversaries to pivot to the OT network even if the IT network is compromised. Define a demilitarized zone (DMZ) that eliminates unregulated communication between the IT and OT networks.
  • Organize OT assets into logical zones by taking into account criticality, consequence, and operational necessity. Define acceptable communication conduits between the zones and deploy security controls to Filter Network Traffic [M1037] and monitor communications between zones. Prohibit Industrial Control System (ICS) protocols from traversing the IT network.
  • Require Multi-Factor Authentication [M1032] to remotely access the OT and IT networks from external sources.
  • Implement regular Data Backup [M1053] procedures on both the IT and OT networks. Ensure that backups are regularly tested and isolated from network connections that could enable the spread of ransomware.
  • Ensure user and process accounts are limited through Account Use Policies [M1036], User Account Control [M1052], and Privileged Account Management [M1026]. Organize access rights based on the principles of least privilege and separation of duties.
  • Enable strong spam filters to prevent phishing emails from reaching end users. Implement a User Training [M1017] program to discourage users from visiting malicious websites or opening malicious attachments. Filter emails containing executable files from reaching end users.
  • Filter Network Traffic [M1037] to prohibit ingress and egress communications with known malicious Internet Protocol (IP) addresses. Prevent users from accessing malicious websites using Uniform Resource Locator (URL) blacklists and/or whitelists.
  • Update Software [M1051], including operating systems, applications, and firmware on IT network assets. Use a risk-based assessment strategy to determine which OT network assets and zones should participate in the patch management program. Consider using a centralized patch management system.
  • Set Antivirus/Antimalware [M1049] programs to conduct regular scans of IT network assets using up-to-date signatures. Use a risk-based asset inventory strategy to determine how OT network assets are identified and evaluated for the presence of malware.  
  • Implement Execution Prevention [M1038] by disabling macro scripts from Microsoft Office files transmitted via email. Consider using Office Viewer software to open Microsoft Office files transmitted via email instead of full Microsoft Office suite applications.
  • Implement Execution Prevention [M1038] via application whitelisting, which only allows systems to execute programs known and permitted by security policy. Implement software restriction policies (SRPs) or other controls to prevent programs from executing from common ransomware locations, such as temporary folders supporting popular internet browsers or compression/decompression programs, including the AppData/LocalAppData folder.
  • Limit Access to Resources over Network [M1035], especially by restricting Remote Desktop Protocol (RDP). If after assessing risks RDP is deemed operationally necessary, restrict the originating sources and require Multi-Factor Authentication [M1032].

Resources

Revisions

  • February 18, 2020: Initial Version

This product is provided subject to this Notification and this Privacy & Use policy.

More Like This

157-Year-Old Lincoln College Succumbed To A Ransomware Attack

157-Year-Old Lincoln College Succumbed To A Ransomware Attack On May 13th, 2022, a college that has remained open through two world wars, the 1918 Spanish flu epidemic, and the Great Depression will close its doors. The college has been struggling to stay afloat in recent years, and the coronavirus pandemic and a recent ransomware attack …

157-Year-Old Lincoln College Succumbed To A Ransomware Attack Read More »

Read More

AA22-131A: Protecting Against Cyber Threats to Managed Service Providers and their Customers

Original release date: May 11, 2022 Summary Tactical actions for MSPs and their customers to take today: • Identify and disable accounts that are no longer in use. • Enforce MFA on MSP accounts that access the customer environment and monitor for unexplained failed authentication. • Ensure MSP-customer contracts transparently identify ownership of ICT security …

AA22-131A: Protecting Against Cyber Threats to Managed Service Providers and their Customers Read More »

Read More

Zero Trust Networks: What Are They?

Zero Trust Networks: What Are They? The internet has brought a world of opportunity for businesses. It is easy for companies to reach out to consumers and offer them products or services without a physical storefront. However, this also opens businesses up to the risk of data breaches and cyber attacks. Cyber attacks can be …

Zero Trust Networks: What Are They? Read More »

Read More

AA22-117A: 2021 Top Routinely Exploited Vulnerabilities

Original release date: April 27, 2022 Summary This joint Cybersecurity Advisory (CSA) was coauthored by cybersecurity authorities of the United States, Australia, Canada, New Zealand, and the United Kingdom: the Cybersecurity and Infrastructure Security Agency (CISA), National Security Agency (NSA), Federal Bureau of Investigation (FBI), Australian Cyber Security Centre (ACSC), Canadian Centre for Cyber Security …

AA22-117A: 2021 Top Routinely Exploited Vulnerabilities Read More »

Read More

Can Ransomware Spread Through Business WiFi Networks?

Can Ransomware Spread Through WiFi? Ransomware has been a menace to businesses large and small for years, and the problem is only getting worse. One of the most insidious aspects of ransomware is its ability to spread through wifi networks, infecting multiple computers and devices. This can cause severe disruptions to business operations, as employees …

Can Ransomware Spread Through Business WiFi Networks? Read More »

Read More

AA22-110A: Russian State-Sponsored and Criminal Cyber Threats to Critical Infrastructure

Original release date: April 20, 2022 Summary Actions critical infrastructure organizations should implement to immediately protect against Russian state-sponsored and criminal cyber threats: • Patch all systems. Prioritize patching known exploited vulnerabilities. • Enforce multifactor authentication. • Secure and monitor Remote Desktop Protocol and other risky services. • Provide end-user awareness and training. The cybersecurity …

AA22-110A: Russian State-Sponsored and Criminal Cyber Threats to Critical Infrastructure Read More »

Read More